
EFFECT OF AN IMPERMEABLE INCLUSION IN THE UNDERLYING 

HIGHLY PERMEABLE PRESSURIZED HORIZON ON THE CONDITIONS 

OF GROUND WATER IN AN IRRIGATED LAYER OF SOIL 

E. N. Bereslavskii UDC 532.546 

The problem of plane, nonpressurized, steady-state filtration through a layer of 
soil into an underlying pressurized horizon, which contains an impermeable section 
at the top, with uniform infiltration on the free surface is solved in a hydro- 
dynamic formation. A constructive solution of the problem is given with the help 
of the method of P. Ya. Polubarinova-Kochina; representations are obtained for the 
characteristic dimensions of the flow scheme and the depression. The case of 
limiting flow - no head in the bottom, highly permeable layer - studied in [I] is 
noted. 

The flow scheme under study is shown in Fig. i. Infiltration water, seeping through a 
layer of soil into an underlying highly permeable layer, the head at the top of which is 
constant and equal to H0, forms a mound of groundwater above the impermeable section, which 
is modeled by a segment of length 2L, and spreads laterally to infinity. It is assumed that 
the intensity of the infiltration (referred to the coefficient of filtration of the soil) 
is constant and equals g. 

The y axis, being a line of symmetry, is a streamline. We shall examine the right half 
of the region of the flow. The study of the model described reduces to determining the 
depression curve AB, bounding the region z, and two mutually conjugate, in this region, 
functions q and ~ with the boundary conditions 

- -  ~ x ) [ ~  = * ! ~  = 'r = o~ ( 1 )  

where ~ and ~ are the velocity potential and the stream function, respectively, referred to 
the filtration coefficient of the soil. 

The problem is solved by the method in [2], which is based on the use of the analytic 
theory of linear differential equations. The canonical region considered here is the rec- 
tangle in the plane �9 = ~z + i~2 (Fig. 2), where p = K'/K (K(k) is the complete elliptic 
integral of the first kind with modulus k, K' = K(k'), k' = /I-C ~2). 

We introduce the functions z(r and m(~) which conformallymap the indicated rectangle 
into the region of filtration z = x + iy and the region of the complex potential m = ~ + i~, 
as well as the functions 

Z = dz/d~, ~ = d ~ / d ~  ( 2 )  
which must be determined. 

The function which gives the conformal mapping of the rectangle on the region of the 
complex velocity w = dm/dz (Fig. 3), corresponding to the boundary conditions (i), is 
written in the form [3] 

~- 02(~+~i)--~2(~--~i~ 
w(~)=V~t ~ V % ( ~  ~0' (31 

where @2(!) is the second Jacobi @-function with the parameter q = exp(-~p); ~ = (i/2~) 
in[(1 +/~)/(i -/7)]. 
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TABLE 1 

Ho/L I h e=O,2 

0 I 0,9997184 

0,00t I 0,9997144 

0,t I. 0,999t045 I 

0,210,9975367 

0,4 [ 0,9882379 

~16 I 0,9680830 
0,8 ] 0,9302154 

t,0 [ 0,8843398 

10,0 I 0,1555625 

H/L 

0,5000 

0,5002 

0,5274" 

h 

0,9708201 

0,9707375 

0,961666i 

/-UL h 

i,O000 I 0,769110 ], 

i'0003 I 0'76S078t I 

i,0318 I 0,755339t I... 

H/L 

2,0000 

2,0003 

2,0351 

0,5695 

0,6863 

0,8313 

0,9928 

t,i645 

t0,0i96 

0,9505844 

0,9226084 

0,8877010 

0,8476825 

0,8047256 

0,i548670 

t,o697 I 1 2o7 7 
,,,6,9:1 ~ 2,,548 
,~26 ] 0,68~56 ] 2,245~ 
,,398~ j 0,6~7589 ] 2,~455 
1,5361 I 0,6276766 I 2,4529 

,0,0779 [ 0,,52,975 I ,0,3065 

Taking into account the behavior of the functions (2) near singular points, and also the 
expression (3), we obtain a parametric solution of the starting boundary-value problem: 

Z = CO~(~§ - ~(~) : ~  c > o ; :  ( 4 )  

fi=Cif~i~(~+~i)-a2(~ ~0 (5) 
~3(~) 

The validity of the formulas (3)-(5) is established by a direct check. 

Writing the representation (4) for different sections of the boundary of the region 
followed by integration gives parametric equations for the corresponding boundary sections 
of the scheme. 

We note the limiting case H 0 = 0 (no head), associated with the degeneracy of the 
region of the complex velocity. For ~ = 0.5p, w = /~ tg ~T, Z = C cos zT, ~ = C~ sin ~T. 
The semicircle lw - 0.5(1 + e)i[ < 0.5(1 - g), drops out of the region w, and the depression 
curve emerges onto the top of the underlying layer at a right angle at some point B, which 
coincides with the point of the inflection R, so that the entire depression curve becomes 
convex. For this scheme, studied in [i], we have (L I is the abscissa of the point B) 

L / L  = V l / ( i  - e), It/L = ~f~'(i -- e), (6) 
In the direct physical formulation, the quantities L and H0, obtained by integrating 

(4) from the point D to the point C and from the point D to the point B using the point A, 
are parameters of the mapping C and the modulus k. In the algorithm programmed for a 
computer k is found from the relation for H 0 by the halving method, and the value of H and 
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also the coordinates of the points on the depression curve are calculated by first eliminating 
C from the relation fixing L = i. 

According to the calculations, with fixed e the function k = k(H0/L) is a monotonically 
decreasing function and has an upper limit k, = k(0), which corresponds to the limiting case 
H 0 = 0 and the maximum admissible value for the flow scheme under study; the modulus k, is 
determined from the equation 

K'/K = (U~)ln [(| + Y~s)/(i - ~r~)]. (7 )  

In  a d d i t i o n ,  f o r  k ~ 0 .707105  (which  c o r r e s p o n d s  t o  t h e  c a s e  when K ~ K ' )  t h e  S - f u n c t i o n s  
a r e  expanded  in  a s e r i e s  i n  powers  o f  t h e  p a r a m e t e r  q,  and in  t h e  o p p o s i t e  c a s e  t h e  e x p a n s i o n s  
in  q '  = e x p ( - ~ p ' ) ,  where  p '  = l / p ,  a r e  u s e d .  

T a b l e  1 shows t h e  r e s u l t s  o f  c a l c u l a t i o n s  o f  k and H/L as  a f u n c t i o n  o f  H0/L f o r  some 
v a l u e s  o f  E; t h e  f i r s t  row c o n t a i n s  t h e  v a l u e s  o f  k ,  and H , / L  found  f rom (7)  and ( 6 ) ,  
r e s p e c t i v e l y . .  

F i g u r e  4 shows t h e  dependence  o f  H/L on r and H0/L ( t h e  l i n e s  1-7 f o r  ~ = 0 . 6 ;  0 . 5 ;  0 . 4 ;  
0 . 3 ;  0 . 2 ;  0 . t ;  0 . 0 1 ) ;  f o r  H0/L > 1 i t  i s  n e a r l y  l i n e a r .  

F i g u r e  5 shows t h e  d e p r e s s i o n  c u r v e s  c a l c u l a t e d  w i t h  H0/L = 0 .6  and d i f f e r e n t  v a l u e s  o f  
( t h e  l i n e s  1-4  f o r  E = 0 . 8 ;  0 . 6 ;  0 . 4 ;  0 . 2 ) ;  f o r  t h e  same v a l u e s  o f  E t h e  b roken  l i n e s  

c o r r e s p o n d  t o  t h e  l i m i t i n g  c a s e  H0 = 0. 

The a u t h o r  t h a n k s  V. N. Emikh f o r  u s e f u l  r emarks  and d i s c u s s i o n s .  
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SELF-SIMILAR SOLUTIONS OF A SYSTEM OF TWO PARABOLIC 

EQUATIONS 

A. M. Volchek and A. P. Napartovich UDC 533.9:51 

The description of many physical systems comes down to the solution of a system 
of two nonlinear equations of the parabolic type. Such systems can be the elec- 
tron-hole plasma of a semiconductor and a weakly ionized gas plasma, nonequili- 
brium superconductors, as well as a number of chemical and biological objects, 
the properties of which are determined by autocatalytic reactions. The formation 
of complicated nonuniform structures occurs upon the loss of stability in these 
systems. We shall examine the concrete problem of the development of an ioniza- 
tion-superheating instability in a self-maintained discharge, described by the 
equation of charged-particle balance of the plasma and the equation of heat balance. 
The mechanism of this stability is connected with the decrease in the density of 
gas escaping at constant pressure from a superheated region, and with the rise in 
electron temperature occurring as a consequence of this (see, e.g., [i]). Self- 
similar functions for the local values of the charged-particle density and the gas 
temperature, being solutions of the corresponding balance equations, are of 
interest for the understanding of the nonlinear state of this process. An 
ionization-superheating instability in a high-frequency field and a self-similar 
solution, describing the explosive development of conductivity in a constricting 
discharge, neglecting the thermal conductivity of the gas and charge recombination, 
were studied in [2]. Self-similar solutions of a pair of equations of the para- 
bolic type under the conditions of a self-maintained glow discharge are investi- 
gated in the present paper. The solutions obtained can be of interest for a whole 
series of physical systems. 

Let an electric discharge be ignited between two electrodes spaced a distance L apart. 
Assuming that it is uniform along the current, we use balance equations for the charged- 
particle density n and the gas temperature T: 

a n l ~ t - -  O a A n  = v i n  - ~n~; (1) 

i aT i__ .E ~ 
ot xTAT = - - .  ( 2 )  cpp 

Here D a and X are the coefficients of ambipolar diffusion andthermal diffusivity, respec- 
tively; ~i is the frequency of ionization by electron impact; $ is the dissociative- 
recombination constant; Cp is the reduced heat capacity of the gas; o = e2n/mvm is the 
conductivity of the discharge plasma, which neglecting electron-electron collisions, is 
proportional to the electron density. In writing (i) and (2), it was assumed that the 
time of pressure equalization is small compared with the characteristic time of development 
of instability. This is possible if the pressure does not increase with time owing to the 
presence of a large ballast volume. 

The ionization frequency is usually a sharply growing function of the parameter E/N 
ET (N is the gas density). Under the conditions of a gas discharge, the approximation 
vi = A exp (-Bp/ET) is used for the frequencies [i], where A, B = const. 
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